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ABSTRACT

The Laplace-Young equation can be solved approximately using perturbation methods [1,

2, 3 and 4]. In all cases, the perturbation results were compared with numerical solutions

of Hartland and Hartley [5] but they were never compared with experimental profiles. In

this work, the O’Brien’s Second-Order Solutions [3] were improved by algebraic

simplifications and the singularity presented near φ=0 was eliminated. The second-order

relationship were very simple and it was not necessary to use the limit of the functions to

evaluate it at φ = 0. Also a new method was developed to calculate the surface tension

using O’Brien solutions. All the ultimate methods were used to compute surface tension

and contact angles values from experimental drop profiles from different fluids. A friendly

Windows’ application was developed to calculate surface tension using these methods.

The results have a good agreement between them, the differences in all the cases were

less than 10%.

KEYWORD: contact angle, experimental method, hydrocarbon-air system, Laplace-

Young equation,  perturbation method, surface tension.



INTRODUCTION

The shape of liquid drops (sessile and pendant) can be described by the Laplace-Young

equation. This equation is just a balance between gravity, hydrostatic pressure, and

surface tension effects. When drops are axisymmetric, the Laplace-Young equation can be

written as:
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where σ is the surface tension, R1 and R2 are the principal radii of curvature, ρ is the

liquid density, g is the gravitational acceleration and R0 is the radius of curvature at y=0

(Fig. 1). The term 
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  is the mean curvature of the drop, this curvature is a

function of the y position and can be expressed using differential geometry as[6]:
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With the definition of curvature given in Eq. (2), Eq. (1) can be reduced to an ordinary,

nonlinear second order differential equation and can be numerically integrated. The

Laplace-Young equation written in a parametric form x=x(s) and y=y(s), where s is the

arc length measured from the drop apex can be solved approximately using

perturbation methods [1,2,3,4].

The objective of this work was to apply the perturbation solutions [2,3,4] to experimental

pendant and sessile drops profiles in order to compute surface tension and contact angle

for different liquid-gas-solid systems.

MATHEMATICAL MODEL



The Laplace-Young equation written in a parametric form (i. e. in terms of the arc length,

s) is:
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where φ is the inclination at any point (x, y) and s is the arc length measured from the

apex (Fig. 1). The advantage of the system of first-order equations (Eq. 3) over the

second-order equation (Eqs.1 and 2) is that there is no longer problems with the first

order derivatives when the profile of the drop becomes vertical (at φ=π/2).

As the arc length is of no particular interest, O’Brien and van den Brule [2] proceed to

eliminate it from the system of equation (Eq. 3).  They obtained an expression for dφ/ds

and, then dividing this in turn by Eqs. (3.b) and (3.c), they found:
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The  boundary conditions were:
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where 2L (or DE) is the maximum diameter of the drop.



Defining x RX= ; y RY=  and 2 0R P R= , ε = R2 , where R is the dimensionless

radius ( ( )R L g= ρ σ 1 2
), the system of equation (4) reduces to:
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The scaled boundary conditions are:
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The solutions of equations are seek in the following form [2,3,4]:
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Zero-Order Solutions  [2,3,4]:
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First-Order Solutions [2,3]:
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Second-Order Solutions



With respect to the Second-Order Solution, the O’Brien’s solutions was very troublesome

and presented a singularity at φ = 0 and φ π= . The problem in φ π=  is because an

incorrect scaling near this region was used, and it was found that a boundary layer occurs

in this part of the drop [3]. In our work, the O’Brien’s Second-Order Solutions was

improved by algebraic simplifications. Additionally, the singularity presented near φ = 0

was eliminated. The second-order solution becomes very simple and it is not necessary to

use the limit of the functions to evaluated it at φ = 0. The equations obtained are:
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The perturbation solution can be used to computer the contact angle and surface tension

from the shape of small sessile and pendant drops. For contact angles O’Brien and van der

Brule [2] recommended three different ways to compute contact angles. All three

methods were followed in this work using and experimental sessile drop profile to

calculate the contact angle values.

EXPERIMENTAL EQUIPMENT

In order to create pendant or sessile drops, a high pressure cell was designed to work up

to 5,000 psia (34.5 MPa) and 212 °F (373.15  K). The cell consists of a metal body

(stainless steel) and has two Pyrex windows. The windows are sealed to the cell body

through grafoil (1/16 inch of thickness). The liquid phase can be introduced into the cell

from the top or from the bottom in order to create pendant or sessile drops. A surgical

needle inserted at the top of the cell is used to form pendant drops. A small hole on the

bottom surface allows the formation of sessile drops, but also a needle can be inserted



from the hole, in case that emergent or captive drops are desired. There is a gas entrance

in one of the sides and a thermocouple well in the other. Four channels spanning the width

of the cell are used to circulate water, keeping the temperature constant inside the cell.

The circulating water temperature is controlled using a constant temperature bath. Figure

2 is a schematic view of the complete experimental setup for the high pressure cell.

The cell is illuminated from the back using a fiber optic lamp. A diffuser is placed between

the lamp and the rear window. A video camera (CCD-72 from DAGE-MTI Incorporated)

is located at the front window. Two lenses can be attached to the video camera through a

C connector. One of the lenses is the Nikkon 55 mm micro with a PK-13 extension ring

and the other lens is the D. O. Industries Zoom 6000 Microscopic. The pendant drop

image can be captured easily and it can be sent to the video recording system (Panasonic

AG-7300) or to the computer (using the Targa videographic system connected to

Intel80586-100 Mhz CPU with VGA card and monitor). The image visualization

equipment is also furnished with a Sony PVM2530 RGB monitor. The cell and the optical

components are placed on an Oriel optical tubular bench with vibration isolation legs.

Figures 3 and 4 show pendant and a sessile drops before and after the computer image

analysis. From the drop image outlines the xy profiles are obtained using a program in

Visual-Basic. A friendly Windows’ application was developed to calculate surface tension

and contact angle using different methods. Figure 5 shows an esquematic description of

the main structure of the program.

Several pendant drop experiments were made at low pressure. The liquid used decane

(99+%, Aldrich), decy alcohol (99+%, Aldrich), hexadecane (99%, Aldrich), toluene

(99%, Aldrich), heptane (99%, Aldrich) and 2,2,4-trimethylpentane (99+%, Aldrich). The

gas phase used was air at 25°C and 1 atm. For sessile drop the system mercury-air-glass

was used.



RESULTS AND DISCUSSION

The perturbation solution is a series of functions that it must converge to the correct

value when the number of terms goes to infinite. In this work, Eq. (3) was cut in the third

term. The error in the series can be calculated through the difference between the

numerical solution (Runge-Kutta 4th order) of Eq. (6) and the perturbation solution (Eq.

(8)). This error is a function of the maximum drop radio (DE/2) and the value of the point

inclination (φ). On Table 1, there are presented the maximum drop radius that is possible

to allow if a maximum percent error in the series is impost (1 to 10%). The perturbation

solution was developed for drops with relatively small radii.

A theoretical water profile for a pendant drop was generated by numerical integration of

Laplace-Young equation. Both, the theoretical profile and the second-order perturbation

solution are presented in the Fig. 6. In this case, the dimensionless maximum drop radio

(R) is 0.618729035. From Table 1.a, with an error less than 5%, the perturbation solution

is a good approximation between the range of [0, ½ π]. This agree with the results

presented at the Fig. 6. A comparison between the perturbation solution and an

experimental profile for decane was done (Fig. 7). From these results, it can be concluded

that the accuracy of the perturbation equations depends on the following parameters: the

maximum diameter of the drop and the total points of the drop profile taken into account

(φ value).

The new method developed to calculate the surface tension using O’Brien solutions was

based on the searching of a correction factor. This factor was calculated by comparison of

the DE value from the perturbation and Runge-Kutta solutions. On Table 2 are reported

the surface tension values calculated by the O’Brien’s perturbation solutions and those

values obtained using the correction factor found in this work. For all the cases, the

corrected values are higher than those predicted by the O’Brien’s solutions.



When the complete set of O’Brien solutions was put together in order to compute surface

tension values from the complete profiles of pendant drops, the results were extremely

poor, as it can be seen in Fig. 8 (ε=0.8). To obtain drops with small values of ε is not

always experimentally possible. This correction factor allows to apply perturbation

solution to medium sized drops with an acceptable accuracy.

Table 2 summarizes all the results for the systems studied. Typical experimental pendant

drop profiles contain more than 400 data points. In general, there is a good agreement

between the surface tension obtained for the spline methods and the Hansen and

Rødsrud’s technique [7], and those collected by Jasper [ 8].

Table 3 shows all contact angle values calculated by perturbation solution using the three

methods suggested by O’Brien and van der Brule [2]. Notice that the results, in general,

have an acceptable repeatability.

CONCLUSION

The perturbation solutions for a sessile drop can be used to calculated the contact angle

knowing the maximum radius and drop height. The solution for the bottom of a pendant

drop can be used to compute surface tension values.

LIST OF SYMBOLS

DE: Maximum diameter of the drop.

g: Gravitational acceleration.

L: Maximum radius of the drop.

P: Variable define on Eq. (6).

R: Dimensionless radius.

R0: Apex radius of curvature.

R1 and R2: Principal radii of curvature.

s: Arc length measured from the drop apex.



x: Independent variable.

X: Dimensionless variable defined on Eq. (6).

y: Axial coordinate.

Y: Dimensionless variable defined on Eq. (6).

ε: Variable defined on Eq. (6).

φ: Inclination at any point.

ρ: Liquid density.

σ: Surface tension.
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Table 1.a Dimensionless Maximum Drop Radio [Pendant Drop]

Interval 1 % 5 % 10 %

0 - ¼ π [rad] ≤ 0.721307433 ≤ 1.05889275 ≤ 1.237080174

0 - ½ π [rad] ≤ 0.553145002 ≤ 0.854197032 ≤ 1.047901276

0 - ¾ π [rad] ≤ 0.291594222 ≤ 0.425484714 ≤ 0.494986404

Table 1.b Dimensionless Maximum Drop Radio [Sessile Drop]

Interval 1 % 5 % 10 %

0 - ¼ π [rad] ≤ 0.731951052 ≤ 1.093456621 ≤ 1.293209846

0 - ½ π [rad] ≤ 0.534571904 ≤ 0.790183473 ≤ 0.935881764

0 - ¾ π [rad] ≤ 0.298915124 ≤ 0.449255187 ≤ 0.533576983



Table 2. Surface Tension Values [dynes/cm] from Pendant Drop.

Liquid Jasper Hansen &
Rødsrud

López et. al. O´Brien & van der
Brule

This work

Decyl Alcohol 28.6 25.3 25.7 23.1 25.6

Toluene 28.1 25.6 25.5 23.1 25.7

Hexadecane 27.1 23.7 24.3 23.4 25.8

Heptane 19.7 19.4 19.6 18.5 20.5

2,2,4-Trimethyl
Pentane

18.4 18.1 18.1 17.5 19.5

Decane 23.5 22.3 22.2 20.7 22.8



Table 3: Contact Angle Values [dynes/cm] from Sessile Drop.

Substance Contact angle
perturbation

±1°

Contact Angle
goniometer

±1°
Mercury-air-glass 132 132°
NaOH(0.01M)-air-aspirin 53 52
NaOH(0.04M)-air-aspirin 56 57
NaOH(0.06M)-air-aspirin 60 61
NaOH(0.07M)-air-aspirin 61 61
NaOH(0.10M)-air-aspirin 72 73
NaOH(0.01M)-air-Benzoic acid 59 60
NaOH(0.04M)-air-Benzoic acid 61 61
NaOH(0.06M)-air-Benzoic acid 65 66
NaOH(0.07M)-air-Benzoic acid 67 69
NaOH(0.10M)-air-Benzoic acid 73 71



Fig. 1 Pendant (a) and Sessile (b) drop showing the geometrical variables.



Fig. 2 Experimental set-up of the equipment used to obtain TGA images from sessile and

pendant drops.



 

Fig. 3 Original image (TARGA format) for sessile and pendant drops.



Fig. 4. Sessile and Pendant drop images after the computer image analysis.
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Fig. 5. Esquematic description of the Windows’ application.
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 Fig. 6. Theoretical and the second-order perturbation water profile.
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